Facebook |  ВКонтакте | Город Алматы 
Выберите город
А
  • Актау
  • Актобе
  • Алматы
  • Аральск
  • Аркалык
  • Астана
  • Атбасар
  • Атырау
Б
  • Байконыр
Ж
  • Жезказган
  • Житикара
З
  • Зыряновск
К
  • Капчагай
  • Караганда
  • Кокшетау
  • Костанай
  • Кызылорда
Л
  • Лисаковск
П
  • Павлодар
  • Петропавловск
Р
  • Риддер
С
  • Семей
Т
  • Талдыкорган
  • Тараз
  • Темиртау
  • Туркестан
У
  • Урал
  • Уральск
  • Усть-Каменогорск
Ф
  • Форт Шевченко
Ч
  • Чимбулак
Ш
  • Шымкент
Щ
  • Щучинск
Э
  • Экибастуз

Археи против божественного творения

Дата: 21 января 2011 в 14:20

Археи против божественного творения

Как именно в ходе эволюции из случайного набора генов были отобраны комбинации, обеспечивающие наилучшее приспособление к меняющимся условиям среды, ученые выяснили в ходе исследования обмена веществ у галофильных архебактерий.

Метаболизм – обмен веществ – ключевой процесс, обеспечивающий существование любого организма, его питание, снабжение энергией. Пути метаболизма различаются у разных групп живых существ, обитающих на Земле. Растения, скажем, существуют за счет фотосинтеза, потребляя углекислый газ и воду и создавая из них необходимые органические вещества, прежде всего углеводы. Человек и другие животные не способны создавать органические вещества из неорганических и даже из простых органических веществ. Они получают энергию, расщепляя, например, глюкозу до активированной уксусной кислоты. Затем это соединение либо разлагается до углекислого газа и воды с выделением энергии, либо запасается в виде жиров, если потребности организма в энергии уже удовлетворены.

Совсем по-другому живут многие бактерии и внешне похожие на них археи, отличающиеся, однако, по химическому строению и генетическим механизмам. Многие из них способны образовывать сложные биологические молекулы из самых простых органических соединений.

Международный коллектив ученых, среди которых есть и наши соотечественники, обнаружил новый, ранее не известный путь метаболизма углерода у архей Haloarcula morismortui, растущих в почти насыщенных растворах солей, например, в Мертвом море.

Это открытие проливает свет на происхождение этой необычной группы организмов и еще раз подтверждает роль случайности в эволюции. Работу публикует журнал Science.

«Галоархеи, с которыми мы работаем, используют для питания различные органические соединения, например, ацетат. В ацетат-ионе всего два атома углерода, и микроорганизм должен уметь из этого простого соединения построить сложные биологические молекулы, содержащие десятки и сотни углеродных атомов – сахара, белки, нуклеиновые кислоты. Млекопитающие не сталкиваются с такими проблемами, потому что мы сразу потребляем в качестве пищи сложные молекулы. Поэтому и пути метаболизма различаются. До нашей работы было известно два необходимых для роста на ацетате пути, мы доказали существование третьего (он называется метиласпартатным), более сложного, включающего в себя больше шагов, чем ранее изученные. Исследуемые нами организмы живут в очень агрессивных средах, и этот цикл позволяет им перерабатывать углерод в таких условиях. Более того, нам удалось показать, как этот необычный путь мог возникнуть в процессе эволюции.

Сегодня известно не так много примеров, когда возможно более-менее обоснованно проследить эволюцию какого-либо метаболического пути,

и наша работа – один из них», — рассказал «Газете.Ru» работающий на биологическом факультете Университета Фрайбурга выпускник МГУ им. М.В. Ломоносова Иван Берг, руководивший исследованиями.

Галоархеи или, как их иногда называют, галобактерии относятся к археям (архебактериям). Археи – очень древняя группа организмов. Сейчас они продолжают существовать в самых экстремальных для жизни условиях – в очень соленых озерах, в воде высокой температуры (рекорд – 122 градуса), в очень кислых средах. Однако даже в таких агрессивных средах на современной Земле есть органические вещества, иногда солнечный свет и кислород. А зародились археи в еще более суровой среде. Они возникли из первых живых организмов, которые, по всей видимости, жили на остывающей Земле при высокой температуре и с ядовитой для нас атмосферой. Кислород для них был бы ядом, а все вещества они создавали из солей сами (то есть были автотрофами), и на органическом сырье просто не смогли бы жить.

«Среда менялась, в ней появились простейшие органические вещества, а затем кислород. Однако чтобы получить возможность питаться органикой и использовать кислород, этим организмам нужны были новые гены. Мы предполагаем, что такой генетических материал предки галоархей получили с помощью горизонтального переноса от других микроорганизмов, раньше приспособившихся к новым условиям, так как существующие гены изменять намного дольше и сложнее, процесс заимствования проще. Следует отметить, что этот процесс не был «сознательным» или направленным. Как и все эволюционное процессы, он был случайным.

Заимствованные гены подобны конструктору «Лего», из которого вы строите совершенно разные структуры, потом ломаете, снова строите – самолет из крепости, например.

Так и эти археи брали те гены, что были вокруг. Получались самые разные комбинации, однако существа, обретшие способность использовать ацетат, которым богата их жизненная среда, получили преимущество, их число увеличилось, они закрепили свой новый путь развития.

Результат длительной эволюции выглядит совершенным и может натолкнуть на предположение о неком разумном начале, направленном творении организма. Однако когда мы изучаем процесс его возникновения, мы видим, что «творение» было совершенно хаотическим. Природа – не инженер, а, скорее, бродячий ремесленник с ограниченным набором инструментов и запчастей (англ. – tinker). Если инженер планирует то, что он собирается создать, подбирает, ищет заранее нужные инструменты и материалы, то такой ремесленник решает проблему лишь теми средствами, которые есть под рукой. Если нет оптимального решения задачи, используют то, какое есть. Также и эволюция: то, что мы видим сейчас как идеально функционирующее, когда-то возникало из частей, которые друг другу мало подходили. Нам удалось показать такой путь эволюции на примере древних архей», — пояснил Берг.

Подобное исследование могло быть сделано и в России, однако реализация перспективной научной идеи в российских условиях осложнена материальными и организационными проблемами,

считает он. Биологические исследования часто требуют дорогостоящего оборудования, реактивов, технологий. Кроме того, необходимы налаженные связи между лабораториями для объединения усилий по работе над комплексными задачами, а также возможность оперативного получения информации.

«С идеями в России проблем нет, но любую идею нужно доказать, и с этим есть проблемы. Ряд групп (в частности, коллектив профессора Елизаветы Александровны Бонч-Осмоловской из Института микробиологии РАН, недавно, кстати, опубликовавших результаты своих последних исследований в авторитетнейшем научном журнале Nature) продолжают работать на очень высоком уровне. Однако, чем больше финансов и кооперации требуется для работы, тем сложнее вести ее в России. Например, в моей кандидатской диссертации, которую я делал в Москве, мы проделали подобную работу, но лишь на доступном нам методическом уровне, который не позволил четко доказать или опровергнуть наши предположения. Ситуация для нас застопорилась. А в науке необходимо иметь четкое фактическое доказательство данных, чтобы не утонуть в спекуляциях.

В подобную «ловушку» попали авторы нашумевшей статьи о бактериях, якобы содержащих в ДНК мышьяк вместо фосфора.

Выделение нового организма, способного расти в среде, содержащей очень большие количества арсената, — факт, сам по себе, любопытный. Однако вывод о том, что арсенат может использоваться этими бактериями вместо фосфата, например, для построения молекул ДНК, выглядит, как минимум, преждевременным. Авторы не предоставили прямых доказательств этого утверждения, и полученные ими результаты вполне могут быть объяснены способностью бактерий расти в присутствии следовых количеств фосфора.

Если все же их правота будет подтверждена в дальнейшем, это будет одно из крупнейших открытий в данной области последнего времени и откроет новые горизонты для работ в области биохимии, молекулярной биологии и экологии микроорганизмов. Однако, здесь уместно вспомнить фразу Карла Сагана «Extraordinary claims require extraordinary evidence», поэтому это революционное предположение должно быть подкреплено очень четкими доказательствами», — подытожил Берг.

Работа имеет и перспективное прикладное значение.

Сегодняшняя наука способна создавать микроорганизмы с заданными полезными свойствами, например, способными более качественно превращать биомассу в биологическое топливо, биоразрушаемые полимеры или медицинские препараты. Зная различные пути метаболизма, их достоинства и недостатки, можно затем избирательно их внедрять с помощью генов в бактерии, имеющие прикладное значение, для оптимизации процесса биологического синтеза целевых продуктов.

По сообщению сайта Газета.ru